NAU Energy Dashboard:

Software Testing Plan

Version 1.0

X

Team: Save Watt
April 5, 2019

Sponsored by:
Jonathan Heitzinger & Dr. Truong Nghiem

Faculty Mentor:

Isaac Shaffer

Team members:
Madison Boman, Hyungi Choi,

lan Dale, Brandon Thomas



This page was intentionally left blank.



Table of Contents

1.

o M N

Introduction

Unit Testing
Integration Testing
Usability Testing

Conclusion

Page
Page
Page
Page
Page

11
13
16



1. Introduction

1.1 Project Motivation

In the advent of alarming reports about climate change, there has been an ever-growing
effort in favor of energy conservation. Climate change is a genuine concern for the future of
our planet. Northern Arizona University (NAU) has always done its part to reduce waste,
and promote a greener future. NAU is looking to take further action to improve
sustainability by leveraging data collection and analysis.

For the last several years, Northern Arizona University has been collecting a trove of raw
data related to the operation and energy consumption of its buildings. As of now, there is
not a comprehensive way to analyze NAU’s energy data. Current methods are
cumbersome and require a great deal of technical expertise. There are four major issues
with the existing process that our sponsors would like to solve:

» Manually retrieving data from sensors and the current database is time-consuming.
Automatic retrieval of the desired data sets is preferred.

» Current tools do not allow for interactive graphs which show trends over
customizable time frames.

» Broad statistics must be run using external tools. Some automatic statistical
analysis is preferred.

» Exporting data to mutable file types is very difficult.

Our sponsors are looking to make the most of NAU's energy data. This project is
sponsored by Jonathan Heitzinger and Dr. Truong Nghiem. Together they are looking to
develop a web-based system which analyzes and elegantly presents NAU’s building
operation data. They hope to create a product that impacts campus-wide sustainability
and facilitates the collection and analyzation of NAU’s energy data. To accomplish this, we
are developing the NAU Energy Dashboard.

1.2 Solution Overview

The NAU Energy Dashboard is a comprehensive web-based application which can
retrieve, graphically display, export, and run basic analytics on NAU’s collected data. We
plan to simplify the existing process with a tool that abstracts away the complexities that
stifle current research efforts. Our users would like the NAU Energy Dashboard to:

» Automatically handle building operation data retrieval.

» Graphically display data in a way that is interactive.

» Run applicable broad statistics on a wide range of data points.

» Cleanly export mutable CSV files for additional analysis.

This solution eliminates the need for sifting through endless data, presenting data using
external tools, and using specialized tools for fundamental statistical analyses.



1.3 Software Testing

To ensure that the NAU Energy Dashboard is functioning properly, we will be performing a
series of software tests. Software testing is the process of systematically analyzing the
functionality of a software product. Testing will ensure that the actual functionality of the
components that make up our system match the expected results. Since this is a public
system, it is important that the system is defect free and can withstand use by many
different users. We will conduct a series of tests which will fall under three categories:

» Unit Testing: Testing individual units/components of our system.
» Integration Testing: Testing combined units/components.
» Usability Testing: Testing the system with real users.

Each category of testing will allow us to test the system in a different way. The unit tests
will ensure that the methods within each of the system’s key classes are performing
operations as expected. The methods we will test are those that deal with data. There are
many components in our system that are provided by Django, so we will only test
components that were created or highly modified by our team. Integration testing will
assure us that data is being transferred between components as expected. Since our
system is made up of python, javascript, and html we will need to test how all these
components interact with each other. These interactions will mainly be in the form of
variables passing from python to html to javascript via Django’s render functionality. Finally,
we will be greatly emphasizing usability testing. Since the NAU Energy Dashboard is a
publicly accessible web application, it is important that the system is easy to use and fulfills
the expected functionality. Our greatest improvements and insights to bugs will come from
real user experience with the system.

In the following sections we will outline in detail our plans for unit testing, integration
testing, and usability testing. In each section we will explain each category of testing, why
it is important to our system, what tools we will be using, and how we will implement the
tests. We will conclude with an overall timeline for testing our expected outcomes of
testing as a whole.



2. Unit Testing

2.1 Introduction to Unit Testing

In this section, we will be discussing our plans for unit testing. Unit testing focuses on
testing the individual components that make up the system. The purpose is to ensure that
each unit of software performs as designed. Since our system is object-oriented, our units
will be methods within the most important classes. To carry out the unit tests we will be
using the unittest module built into the Python standard library. This library is the preferred
way to write tests in Django. Using this library will also allow us to create an in-depth test
coverage report. This report will tell us how much of our system is actually being tested, so
we can gauge whether or not a critical amount of code is being tested.

We plan to focus on three major modules when conducting unit tests. These modules will
be backend.py, clean.py, and conversions.py. Each of these modules provides key
functionality when working with data. Since the data is our main concern, we seek to
ensure that data is transferred and manipulated as expected. The modules that deal with
data presentation will be covered in integration testing, as these involve multiple modules
working together. Here in unit testing, we are looking to ensure the core of our system is
working as designed.

In the following subsections we will outline each method being tested, equivalence
partitions, boundary values (if applicable), chosen inputs, and assurances. Since many of
these methods rely on instance variables, we will discuss equivalence partitions and inputs
based on these instance variables rather than parameters if necessary.

2.2 Testing backend.py

This module holds two classes, StaticDataRetriever and BackendRetriever. These classes
are responsible for gathering data from NAU’s energy database and our backend database
respectively.

Class: StaticDataRetriever

Equivalence

Partitions Chosen Inputs Assurances
» self.b_identifiers = ielf.b_identifiers - Returns error for
invalid_type . e invalid_type
» self.b_identifiers = ' S?g?;'q‘el}\?ti]er? - Returns error for
update_buildings(self) invalid_form { Al [,‘ tf] © invalid_form
»  self.b_identifiers = I:‘at? Z do t'?‘r] _ Creates rows in
valid dict of ?‘E‘B‘ ] - [“er\Talr;]e; - Building table for
building inf : ’ ildi
uilding info “Alias’], ...) each building




Method

update_sensors(self)

Equivalence
Partitions

self.log_dict =
invalid_type
self.log_dict =
invalid_form
self.log_dict =
valid dict of
Sensor info

»

Chosen Inputs

self.log_dict=7
self.log_dict =
{ “Blue” :
“Banana”, ...}
self.log_dict =
{123_456:
[“B_num”,
“Description”,
“Name”,

“TrendID”, “Type],

.

»

Assurances

Returns error for
invalid_type
Returns error for
invalid_form
Creates rows in
Sensor table for
each sensor

make_log_dict(self)

self.connection =
valid_sql server

self.connection =
invalid_sql server

self.connection =
valid sql
connection to
server
self.connection =
12

Return a
dictionary
containing
information
about buildings
Return error for
connection not
made

Returns error for

T invalid log_id
log_id = invalid » log_id= format >
rend 109 string *123_4D6" »  Returns error for

__create_trend_string(self, log_id) 0910 = » log_id =65 invalid log_id
|nva|.|d_type. »  logid = type
log_id = valid “123_456" »  Returns log
trend log string string padded
with zeros
» Returns error for
invalid log_id
log_id = invalid » log id = “Not Found”
trend log string “ 1%—3 4_D6” » Returns error for
. log_id = .— invalid log_id
get_log(self, log_id) o » log_id=65
invalid_type »  log id = type
log_id = valid 103 456" » Returns
trend log string - dictionary of log
values from

database




Method

Equivalence
Partitions

Class: BackendRetriever

Chosen Inputs

Assurances

Returns error

Buildings = for invalid
invalid_type » Buildings =43 buildings
- . Buildings = list »  Buildings = Returns a list of
getBuildingStrings(self) of [<Building strings
models.Buildin 1>, .] representing
g the building
models
Returns error
»  Building = 74 ‘;‘)’J”'(;‘i\%'d
Building = : ;(?tn ?j_;’z/ep(i ? 2332 Returns error
invalid_type »  fin date B 432 for invalid
sens_type = o s sensor_type
invalid_type : lgslrl d_in Hf”O Returns error
. init_date = 9= for invalid date
get_data(self, building, sens_type, L models.Buildin
init_date, fin_date, incr=1) invalid_type g, sens_type = Returns error
- T ’ fin_date = o T for invalid date
S Electric”,
invalid_type init date = Returns error
Incr = invalid — for invalid
datetime.dateti
type me. fin date = Increment
All valid inputs T " Returns tuple
datetime.dateti of dates and
me, Incr = 45 values for
parameters
Returns error
Buildings = for invalid
invalid_type » Buildings = 43 buildings
ot_num_strings(set Buildings = list »  Buildings = Returns a list of
- - 0 <Building strings
9 9 f [<Build i
models.Buildin 1>, .] representing
g the building
numbers




2.3 Testing clean.py
This module holds the cleaner class. This class is responsible for parsing inputs from the
user as they explore the website.

Class: Cleaner

Method Equivalence Partitions B(\)I:ruc:gy Chosen Inputs Assurances
Time =12 Returns error for
Time = “12-1-17 invalid_type
Time = invalid_type 4:30:45PM” Returns error for
get_datetime(time) Time = invalid_format » None Time = invalid format
Time = valid_format “February 2, Returns time as a
2017 datetime.datetime
5:37:21PM” object
Returns error for
Str=12 Q\e/taLljlrdn_stgreor for
Str = invalid_type Str = “Hello” invalid format
get_build_info(str) Str = invalid_format » None Str = “Adel
. . Returns a tuple
Str = valid_format Mathematics o
(B26) containing (“Adel
Mathematics”,
51826”)
Bwldata = Buildata = 12, Betqm error for
invalid_type, . invalid buildata
] Flag = valid_flag
Flag = valid_input ) type
. Buildata =
Buildata = . . Return error for
L valid_buildata, C
valid_input, invalid flag type
R Flag =12
Flag = invalid_type ) Return error for
: Buildata = C .
. . Buildata = o ” invalid buildata
split_urls(builddata, o Buid="B60",
invalid_format, » None . format
flag) L Flag = valid_flag
Flag = valid_input . Return error for
. Buildata = C
Buildata = . . invalid flag format
o valid_buildata, . .
valid_input, N " Return list which
N Flag = “Sensor . .
Flag = invalid_form . includes [Building
. Buildata = o
Buildata = . . Num, Utility/
L valid_buildata,
valid_input, Flag = valid fla Sensor, start
Flag = valid_input 9= —'ag time, end time]




2.4 Testing conversions.py
This module holds the conversions class. It holds many functions that are responsible for
converting data between units. The functions here are of two types. They either solely take
data as an input or they take data and some exchange rate. The exchange rate could be a
price or other proportion necessary for conversion. Here we show how we will test
functions that fit either type.

Class: Conversions

Equivalence Boundary

Method Assurances

Chosen Inputs

Partitions

Values

» Returns error
kbtu_to_btu(data)* for negative
Data < 0 Data = -10 values
*Many functions in Data>0 B » Returns valid
. . » Data=0 Data = 30
conversions.py follow this Data = Data = “30” output
structure. They can all be invalid_type h » Returns error
summed up by this test. for invalid
value
Data < O, » Returns error
price <0 Data = -10, for negative
C e Data > 0O, ! values
dollars_to_btu(data, price) ! Price = -2 .
Price > 0 » Returns valid
Data = Data = 30, output
*Many functions in o » Data=0 Price =3 P
. . invalid_type, ! ) , » Returns error
conversions.py follow this ) » Price=0 Data = “Test”, : :
Price = . p ” for invalid
structure. They can all be invalid tvpe Price = “Test Voes
summed up by this test. -yP Data =1, P
Data > 0O, ! » Returns error
. Price = -4 .
Price < 0 for negative
price value

2.5 Summary

These tests will ensure that the core backend functionality is performing as expected. All of
the methods above are responsible for generating the data that is passed throughout our
system. Therefore, each must return values as expected and alert of any errors. In the
following section we will move to the modules that make use of this core functionality. This
will be our integration testing phase.

10



3. Integration Testing

3.1 Introduction to Integration Testing

In this section, we will be discussing our plans for integration testing. Integration testing
focuses on testing the components in groups. The purpose is to ensure that each module
interacts with the others as expected. This level of testing can show us where modules are
failing to communicate properly. Django uses two main modules that ensure the aspects of
the backend and the front end communicate as expected. These modules are models.py
and views.py. These modules handle the transfer of data and presentation of data
respectively.

Django uses the pyVows package to ensure that all contracts of communication are
honored. This package can ensure that the models are constructed correctly and that
views.py is rendering pages correctly.

In the following subsections we will outline each method being tested, equivalence
partitions, boundary values (if applicable), chosen inputs, and assurances. Since many of
these methods rely on instance variables, we will discuss equivalence partitions and inputs
based on these instance variables rather than parameters if necessary.

3.2 Testing models.py

Models.py defines each of the tables in our backend database and their relative columns. If
any of these entries are formatted incorrectly, then our system will not run correctly. In
models.py we have 3 main tables, Building, Sensor, and User. The Building table describes
our buildings. Each building has a name, number(Unique), alias(Unique), and id(Unique).
These inform our Sensor model which stores sensor data associated to a given building.
Finally our User table holds usernames, passwords, emails, and permission levels in order
to manage authentication.

Using pyVows we can run two tests which ensure data is being created and stored
properly. PyVows includes a method that builds a mock model and then asserts that all the
fields are filled correctly. This method interacts with our database as well as an
HTTPContext to simulate real interaction with data.

PyVows also allows us to use the method “should_be_cruddable(self, model).” This
method updates and the database with dummy data and flushes it. With this method and
a test html page we can ensure that any GET and POST methods that involve our models
will work properly with our rendered pages.

3.3 Testing views.py

Views.py defines the functionality of each of our application’s pages. Each of these
functions takes in a request and any URL parameters and renders a context based off of a
given template. This is where everything comes together. Views.py consists of 18 different
functions. Each is a variation of one of our 7 core pages. Here we can use a combination

11



of pyVows and Django.test.Client to ensure that the application knows how to respond
when given different URLs.

PyVows allows us to create mock models and contexts to be fed to the system via
requests. These requests are read by views.py and we can then run assurance tests on
the responses. These responses will be come in the form of HTTP response codes which
we can interpret. In most cases we will receive a 200 or 404 response. If these tests return
what is expected, we can be sure that each of our views is performing as expected.

3.4 Summary

Ensuring that each model and each view is functioning as expected will tell us that our
system abides by its own communication contract. This, however, is not enough to ensure
a system that works as expected. Our system is highly user centric, and thus must
perform as they expect. This leads us to usability testing, which we will outline in the
following section.

12



4. Usability Testing

4.1 Introduction to Usability Testing

In this section, we will be discussing our plans for usability testing. Usability testing focuses
on the user’s experience with the system. The purpose is to ensure that system meets the
users expectations and is accessible to our target user base. This level of testing can show
expose logical bugs and user errors that the system must be equipped to handle. It can
also give us qualitative information regarding our system as a whole.

We have two main user groups for our system: general users and administrative users.
General users may be students, staff, and the general public which may be interested in
how NAU consumes energy. Administrative users are researchers and administrative staff
that are interested in deeply analyzing each aspect of NAU’s consumption. We will be
conducting tests with each of these groups to gain insight on improvements that can be
maid from either perspective.

We will mainly be using think aloud testing to gauge the user’s experience as they use the
system. Using this method, the user will be expected to express thoughts about the overall
aesthetics of the system as well as their thoughts about the difficulty carrying out tasks.
This testing method may be used alongside timed tests to measure the speed and ease of
use of the system. In the following subsections we will outline how each of our main pages
will be tested by users to gain insight into our system.

4.2 Testing homepage

Homepage testing will consist of 3 main parts: Registration, Log-in, and exploring
aggregate data. The user will be asked to think aloud as they perform each of these tasks.
The user will be given no instruction besides what they are meant to accomplish. This will
allow us to gain insight into how intuitive the system is. The first time these tasks are
performed, we will time the user to benchmark the speed of each task as well as how long
a user might take to learn how to accomplish the task. The homepage tasks are described
as follows:

» Create an account to log-in
» The user should head to the Sign-Up! Link from the homepage.
» The user should enter their credentials
» The user should submit their information and be redirected.

» Login using a previously created account
» The user should head to the Log-in link from the homepage
» The user should enter their credentials
» The user should submit their information and be redirected.

» View aggregate data
» The user should toggle between different unit types

13



» The user should describe the information they are viewing in context

4.3 Testing building page

Building page testing will consist of 3 main parts: Navigate to a building page, View
aggregate building data, and View data for a utility/sensor of choice. This will allow the user
to carry out the main functionality of any building page while thinking aloud. The first and
third tasks will be timed to gauge efficiency.

» Navigate to a building page
» The user should head to the buildings menu in the header
» The user should search for a building either by searching or using autofill
» The user should be redirected to the building of their choice

» View aggregate building data
» The user should comment on the information immediately presented to them
on the building page
» The user is free to toggle any of the buttons on the page and express their
thoughts

» View data for a utility/sensor of choice
» The user should use the graphing tool to see trends on data of their choice
» The user should enter a date range, increment, and utility/sensor in order to
graph their data.

4.4 Testing export/comparison page
Export/comparison page testing will consist of 3 main parts: Navigate to the export/
comparison page, View data for utilities/sensors of choice, and Export data to CSV. This
will allow the user to carry out the main functionality of these pages while thinking aloud. All
tasks will be timed to gauge efficiency.

» Navigate to export/comparison page
» The user should head to the appropriate link in the header
» The user should comment on the initial presentation of the page

» View data for utilities/sensors of choice
» The user should use the graphing tool to see trends on data of their choice
» The user should enter a date range, increment, buildings, and utilities/sensors
in order to graph their data.
» The user should comment on the presentation of data

» Export data to CSV

» The user should use the export button to receive their data as a .CSV file
» The user should comment on the presentation of the .CSV file

14



4.5 Testing admin page

Admin page testing will consist of 3 main parts: Navigate to the admin page, Edit
permissions, and Perform a manual update. This will allow the user to carry out the main
functionality of this page while thinking aloud. All tasks will be timed to gauge efficiency.

» Navigate to the admin page
» The user should head to the appropriate link in the header
» The user should input their admin credentials
» The user should comment on the presentation of administrative functionality

» Edit permissions
» The user should navigate to the user side of the admin page
» The user should promote or demote a user of choice
» The user should comment on the process

» Perform a manual update
» The user should be able to refresh the backend database with a click of a
button
» The user should click the “Update system” button
» This will be timed to see how long an update might take
» The user should then navigate to the main site to see what data may have
changed.

4.6 Summary

These user tests will allow us to continue to improve the system and ensure our users are
satisfied. These user tests will take place at the end of our development cycle. Here we will
have three days of interviews followed by three days of refactoring. This will happen in
three cycles such that we test the system for a total of 18 days. At the end of the testing
period we may perform final refactoring in order to ensure a stable release of the system. In
the following section we will briefly review the topics covered in this document and
conclude with our vision of a highly usable product.

15



5. Conclusion

Sustainability is a growing global concern. Any step we can take to manage our
consumption of resources more efficiently is a step in the right direction. Our mission is to
create an interactive energy dashboard for NAU’s facility services. As we work with our
sponsors, Jonathan Heitzinger and Truong Nghiem, to create the NAU Energy Dashboard,
we are ensuring that NAU positively impacts the future of our planet and is a leader among
the Universities of the world.

In this document we have covered our plans for Unit Testing, Integration Testing, and
Usability Testing. These series of tests will ensure that our system is ready for a stable
release at the end of the development period. By thoroughly testing the main components
of our system and gathering user feedback we will be able to deliver a maximally error-free,
functional, and highly usable software product. In the end this will lead to a successful
NAU Energy Dashboard.

16



